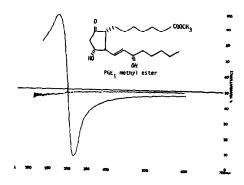
Tetrahedron Letters No. 12, pp 943 - 944, 1973. Pergamon Press. Printed in Great Britain.


Resolution and Configurational Assignments of Methyl-3-hydroxy-5-oxo-cyclopent-1-eneheptanoate, an Important Prostaglandin Intermediate

R. Pappo, P. Collins, and C. Jung

Department of Chemical Research Searle Laboratories A Division of G. D. Searle & Co. Chicago, Illinois 60680, U. S. A.

(Received in USA 22 January 1973; received in UK for publication 8 February 1973)

We wish to report the resolution and configurational assignments of methyl-3-hydroxy-5-oxocyclopent-1-eneheptanoate(1), a key intermediate in the synthesis of prostaglandins. Treatment of 1 with (R)-2-amino8xy-4-methylvaleric acid(2) in a nethanol-pyridine mixture (10:1) at room temperature for 18 hours yielded a mixture of oxines (3) and (4). Although attempts at selective crystallization proved to be fruitless, chromatography on silicic acid (Mallinckrodt SilicAR CC-4) using 1% EtOH in CHCl₃ as eluent unexpectedly effected a clean separation of the two diastereoisomers 3 (eluted first) [α]_D-61.9° (CHCl₃), m.p. 58-60° and α 4 [α]_D+55.7° (CHCl₃), m.p. 45-48°. Similar results were obtained with (R)-2-amino8xy-3,3-dimethylbutyric acid hydrochloride.

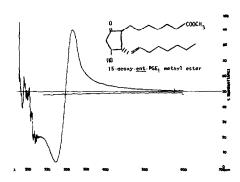


Fig. 1

Fig. 2

Regeneration of the ketones $5[\alpha]_D$ -17.2° (MeOH), m.p. 58-59°, and $6[\alpha]_D$ +16.8° (MeOH), m.p. 58-59.5° was accomplished by treatment of 3 and 4 with titanium trichloride at 60° for 3 hours in aqueous THF containing ammonium acetate.

The configurations of 5 and 6 were determined by converting each one to 15-deoxy PGE₁ methyl ester³ and comparing the O.R.D. and C.D. curves of the products with those of authentic PGE₁ methyl ester.⁷ Thus 15-deoxy PGE₁ methyl ester derived from 6 had O.R.D. and C.D. curves which were identical with those of PGE₁ methyl ester, whereas the product from 5 displayed the mirror image curves (Fig. 1 and Fig. 2).

References

- C. J. Sih, R. G. Salomon, P. Price, G. Peruzzotti and R. Sood, J. Chem. Soc. Chem. Comm., 240, (1972); C. J. Sih, P. Price, R. Sood, R. G. Salomon, G. Peruzzotti, M. Casey, J. Amer. Chem. Soc., 94, 3643 (1972).
- F. S. Alvarez, D. Wren and A. Prince, J. Amer. Chem. Soc., 94, 7824 (1972);
 A. F. Kluge, K. G. Untch and J. H. Fried, J. Amer. Chem. Soc., 94, 7827 (1972)
- 3. R. Pappo, and P. W. Collins, Tetrahedron Letters, 2627, (1972).
- E. Testa, B. J. R. Nicolaus, L. Mariani, and G. Pagani, Helv. Chim. Acta, 46, 766 (1963).
- R. Pappo, R. B. Garland, C. J. Jung, and R. T. Nicholson, <u>Tetrahedron Letters</u>, in press.
- 6. G. II. Timms and E. Wildsmith, Tetrahedron Letters, 195 (1971).
- 7. Prepared by diazomethane treatment of biosynthetically derived PGE_1 ; the configuration of PGE_1 at position 11 is R.